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This study is an extension of the Graetz problem to include the rarefaction effect, viscous dissipation
term and axial conduction with constant-wall-heat-flux thermal boundary condition. The energy
equation is solved analytically by using general eigenfunction expansion. The temperature distribution
and the local Nusselt number are determined in terms of confluent hypergeometric functions. The effects
of the rarefaction, axial conduction and viscous dissipation on the local Nusselt number are discussed in
terms of dimensionless parameters such as the Knudsen number, Peclet number and Brinkman number.
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1. Introduction

The Graetz problem, which is the problem of hydrodynamically-
developed, thermally developing laminar flow of an incompressible
fluid inside a tube neglecting the axial conduction and viscous
dissipation, was solved analytically by Graetz [1,2] and Nusselt [3]
more than a century ago. Many studies extended the Graetz
problem to include additional effects (such as the axial conduction
and viscous dissipation) and different channel geometries at the
macroscale. An excellent review on the solution of the Graetz
problem at the macroscale can be found elsewhere [4].

As the ratio of the mean-free-path (l) to the characteristic
length of the flow (L)–which is known as the Knudsen number
(Kn¼ l/L) – increases, the continuum approach fails to be valid, and
the fluid modeling moves from continuum to molecular model. For
the Kn number varying between 0.01 and 0.1 (which corresponds to
the flow of the air at standard atmospheric conditions through the
channel that has the characteristic length of 1–10 mm), the regime
is known as the slip-flow regime and the continuum modeling
together with the slip-velocity and the temperature-jump
boundary conditions (the rarefaction effect) are valid [5]. More
recently, the Graetz problem has also been extended to study the
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microscale flows by including the rarefaction effect both analyti-
cally [6–12] and numerically [13–15].

The characteristic lengths of the microchannels are very small,
therefore viscous forces dominate inertial forces leading to a low Re
(i.e. Re� 1) and a low Pe (Pe¼ RePr). For flows with a small Peclet
number, the axial conduction term cannot be neglected, since the
characteristic time of the convection and the diffusion becomes
comparable, and the convection term no longer dominates the
conduction term in the longitudinal direction. The Graetz problem
with the inclusion of the axial conduction term has been an inter-
esting problem due to the presence of the non self-adjoint eigen-
value problem. Accordingly, the linearly independent
eigenfunctions become non-orthogonal [16]. This interesting
problem has been studied by many researchers for macrochannels
both analytically [17–26] and computationally [27,28] for more
than three decades ago. More recently, Hadjiconstantinou and
Simek [29] studied the effect of axial conduction for thermally
fully-developed flows in micro and nano channels; and Jeong and
Jeong [30] studied the effect of axial conduction together with
viscous dissipation in slit channels with micro spacing for ther-
mally developing flow. Çetin et al. [31] studied the same problem
for a microtube numerically. Dutta et al. [32] and Horiuchi et al. [33]
studied the thermal characteristics of mixed electroosmotic and
pressure-driven microflows with the axial conduction.

This present study extends the Graetz problem to include the
rarefaction effect, viscous dissipation term, and axial conduction in
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Fig. 1. Geometry of the problem.

Nomenclature

Am coefficients of eigenfunctions
Br Brinkman number ðmu2

m=qwRÞ
C matrix defined in Eq. (29)
D matrix defined in Eq. (30)
Fm eigenfunctions
FT thermal accommodation factor
k thermal conductivity
~K matrix defined in Eq. (10)
Kn Knudsen number (l/L)
~L matrix defined in Eq. (9)
~N matrix defined in Eq. (9)
Nux Local Nusselt number ðhxD=kÞ
Pe Peclet number (RePr)
Pr Prandtl number (n/a)
qw wall heat flux
r radial coordinate
r non-dimensional radial coordinate
R tube radius
Re Reynolds number (rumD/m)
T temperature
Ti inlet temperature
u velocity
u non-dimensional velocity
um mean velocity
x axial coordinate

Greek Letters
bm eigenvalues
g specific heat ratio
h non-dimensional radial coordinate
q dimensionless temperature
qN fully-developed temperature
k parameter defined in Eq. (34)
l mean-free-path
m viscosity
x non-dimensional axial coordinate
rs slip radius
f dimensionless temperature
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the fluid for constant-wall-heat-flux boundary condition. By defining
the appropriate non-dimensional parameters, the given problem is
formulated in a similar form with its macroscale counterpart. The
temperature distribution is determined analytically by using the
general eigenfunction expansion and is obtained in terms of
confluent hypergeometric functions. The effects of the rarefaction,
axial conduction and viscous dissipation on the local Nu are discussed
in terms of dimensionless parameters such as the Kn, Pe and Br.

2. Analysis

The steady-state, hydrodynamically-developed flow with
a constant temperature, Ti, flows into the microtube with the
constant heat flux at the wall, as shown in Fig. 1. By introducing the
following dimensionless parameters,

r ¼ r
R
; x ¼ x

PeR
; q ¼ T � Ti

qwR=k
; u ¼ u

um
; Pe ¼ RePr;

Br ¼ mu2
m

qwR
; ð1Þ
the governing energy equation, including the axial conduction and
the viscous dissipation term, and the corresponding boundary
conditions can be written as [13]

u
2

vq

vx
¼ 1

r
v

vr

�
r
vq

vr

�
þ 1

Pe2

v2q

vr2 þ
32Br

ð1þ 8KnÞ2
r2; (2)

q ¼ 0 at x ¼ 0; (3)

vq

vr
¼ 0 at r ¼ 0; (4)

vq

vr
¼ 1 at r ¼ 1; (5)

q/qN at x/N; (6)

where u is the dimensionless fully-developed velocity profile for
the slip-flow regime defined as [31],

u ¼
2
�
1� r2 þ 4Kn

�
1þ 8Kn

; (7)

and qN is the dimensionless fully-developed temperature profile
which can be determined by applying the similar procedure to that
for a macrochannel flow [34], and the solution can be written in
matrix form as,

~M ¼

2
66666666664

1=4 �1 7=24 �4 �8
2 �4 1 16 32
3 �14 14 �64 �128

18 �36 11 192 �384
18 �108 41 �576 �1152
3 �6 2 48 �96
0 2 �1 16 32
3 �30 13 �192 �384

3
77777777775

(8)

~N ¼

2
66664

r4

r2

1
x

1=Pe2

3
77775; ~L ¼ � 1

ð1þ 8KnÞ4

2
66666666664

1
2Br
2Kn

8BrKn
8=3Kn2

128=3BrKn2

�1024Kn4

128=3Kn3

3
77777777775

(9)

~K ¼ ~L
�

~M ~N
�
; (10)

qN ¼
X9

i¼1

~Ki: (11)



Table 1
Comparison of the Local Nus from the present study with the available results from
the literature (pe / N).

x Kn¼ 0 Kn¼ 0.04 Kn¼ 0.08

Present
study

[23] Present
study

[12] Present
study

[12]

0.001 15.813 15.811 9.089 – 5.855 –
0.002 12.538 12.537 8.011 – 5.426 –
0.004 9.986 9.986 6.961 7.186 4.956 5.084
0.008 8.020 8.020 5.994 6.079 4.473 4.544
0.010 7.494 7.494 5.708 – 4.320 –
0.015 6.656 6.656 5.228 – 4.0521 –
0.020 6.148 6.148 4.920 4.950 3.874 3.916
0.040 5.198 5.198 4.312 4.329 3.504 3.534
0.080 4.621 4.621 3.923 3.931 3.260 3.276
0.100 4.514 4.514 3.849 3.855 3.215 3.226
0.200 4.375 4.375 3.756 3.757 3.159 3.161
0.400 4.364 4.364 3.749 3.749 3.156 3.155
1.000 4.364 4.364 3.749 3.749 3.156 3.155
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When Kn¼ Br¼ 0, the solution recovers the macrochannel result
[24] as,

qN ¼ 4xþ r2 � r4

4
� 7

24
þ 8

Pe2
; (12)

The solution to the energy equation, Eq. (2) can be assumed to be
the superposition of two solutions as,

qðr; xÞ ¼ fðr; xÞ þ qNðr; xÞ; (13)

in which case the equation associated with fðr; xÞ becomes
homogeneous in the r direction, and can be further arranged by
defining the following dimensionless parameters,

h ¼ rrs; x ¼ r2
s

�
2� r2

s

�
x; ~Pe ¼ Pe

r2
s
�
2� r2

s
�;

r2
s ¼

1
1þ 4Kn

; ð14Þ

where the rs is the slip radius defined by Larrode et al. [8]. It takes
into account the rarefaction effect. By introducing these variables,
the equation and the boundary conditions associated with fðr; xÞ
can be written as follows,

�
1� h2

�vf

vx
¼ 1

h

v

vh

�
h

vf

vh

�
þ 1

~Pe2

v2f

vh2 ; (15)

fðh;0Þ ¼ qN

�
h

rs
;0
�

at x ¼ 0; (16)

vf

vh
¼ 0 at h ¼ 0; (17)

vf

vh
¼ 0 at h ¼ rs; (18)

f/0 at x/N: (19)

Eq. (15) has the same form as its macroscopic counterpart (i.e.
macrotube flow without the viscous dissipation). The only differ-
ence is the boundary conditions (16) and (18). Setting Br¼ 0 and
Kn¼ 0 would end up with exactly the same problem for the mac-
rochannel flow. The macrochannel flow with low Pe was solved for
both constant wall temperature [25] and constant-wall-heat-flux
[24] boundary conditions. Therefore, the solution procedure of [24]
will be extended to take into account the rarefaction and the
viscous dissipation effects. Actually, the viscous dissipation term
has already been included as the additional terms in the fully-
developed temperature profile, Eq. (12).

We can assume the solution of fðh; xÞ in the form of,

fðh; xÞ ¼
XN

m¼1

AmFmðhÞe�b
2
mx: (20)

Introducing this solution into Eq. (15), it can be shown that the
functions Fm(h) and the eigenvalues bm satisfy the following
eigenvalue problem,

d
dh

�
h

dFm

dh

�
þ hb2

m

 
b2

m
~Pe2
þ 1� h2

!
FmðhÞ ¼ 0; (21)

dFm

dh
¼ 0 at h ¼ 0;

dFm

dh
¼ 0 at h ¼ rs: (22)
Clearly, Eq. (21) does not belong to the usual Sturm–Liouville
system. However, it can be shown that the functions Fm(h) satisfy
the following relation [24], which will be used during the deter-
mination of the coefficients Am’s,

Z rs

0
h

 
b2

m þ b2
n

~Pe2
þ 1� h2

!
FmðhÞFnðhÞdh

¼
�

0 for msn
NðbmÞ for m ¼ n

(23)

where,

NðbmÞ ¼
Z rs

0
h

 
2b2

m
~Pe2
þ 1� h2

!
F2

mðhÞdh: (24)

The solution to Eq. (21) can be expressed as,

FmðhÞ ¼ 1F1ða; b; zÞe�bmh2=2; (25)

where 1F1(a;b;z) is the confluent hypergeometric function (detailed
information about hypergeometric functions can be found else-
where [35]), and the arguments are given as,

a ¼ 1
2
� bm

4

 
b2

m
~Pe2
þ 1

!
; b ¼ 1; z ¼ bmh2; (26)

The eigenvalues can be determined by using the wall boundary
condition, and the summation constants can be evaluated by using
the inlet boundary condition. Note that eigenfunctions Fm(h) are
not mutually orthogonal (by referring to the standard Sturm–
Liouville problem) since the eigenvalues occur non-linearly. To
determine the coefficients Am, similar procedure to that of Davis
[26] is implemented. By using the inlet boundary condition, Eq.
(27), the following relation can be obtained by truncating the series,

XN

m¼0

AmFmðhÞ ¼ �qN

�
h

rs
;0
�
; (27)

To determine Am, we operate on Eq. (27) with the following
operator,

Z rs

0
h

 
b2

n
~Pe2
þ 1� h2

!
FnðhÞdh; n ¼ 1.N (28)

If our system was a standard Sturm–Liouville system, the resulting
systems of equations would give a diagonal coefficient matrix. In
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this case, the coefficient matrix is a full-matrix. The elements of the
coefficient matrix are calculated by evaluating the corresponding
integrals by using numerical integration. During the implementa-
tion, it has been observed that implementation of the relation
defined by Eq. (23) for the calculation of the non-diagonal elements
resulted in more efficient computation. The resulting algebraic
system can be written as,

Cm;n ¼

8<
:�

Z rs

0
h

b2
n

~Pe2
FmðhÞFnðhÞdh for msn

NðbmÞ for m ¼ n
(29)

Dn ¼ �
Z rs

0
h

 
b2

n
~Pe2
þ 1� h2

!
FnðhÞqN

�
h

rs
;0
�

dh; (30)

Am ¼ C�1
mnDn; m ¼ 1.N: (31)

Once the eigenvalues, eigenfunctions and the coefficients Am’s
are determined, the temperature field, qðr; xÞ, can be determined.
Knowing the temperature field and the temperature-jump
boundary condition,
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T � Twall ¼
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Pr
vT
vr r¼R

; (32)

� �

the local Nu can be determined from,

Nux ¼
D

Tmean � Twall

�
vT
vr

�
r¼R
¼ � 2

qð1; xÞ � qmeanðxÞ � 2kKn
;

(33)

where k is the dimensionless parameter defined as,

k ¼ 2� FT

FT

2g

gþ 1
1
Pr
; (34)

where FT is the thermal accommodation factor, g is the specific heat
ratio, and Pr is the Prandtl number of the fluid. qmean is the
dimensionless mean temperature defined as,

qmeanðrÞ ¼ 2
Z 1

0
uqðr; xÞrdr: (35)
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3. Results and discussions

The heat transfer characteristics of the extended Graetz problem
is analyzed by solving the governing equation, Eq. (2), by using
superposition and the general eigenfunction expansion. The
procedure described in the former section is coded by the help of
the Mathematica� software. The eigenvalues are obtained by using
the built-in function FindRoot and the numerical integrations are
performed by use of the built-in function NIntegrate. N¼ 20
eigenvalues are used in the evaluation of the temperature
distribution.

Kn is varied between 0 and 0.1 which are the applicability limits
of the slip-flow regime. Parameter k is taken as 1.667 which is
a typical value for air – the working fluid in many engineering
applications. Pe is varied between 1 and 5, and it is taken as 106 to
demonstrate Pe / N case. Present results are compared with the
available results in the literature. The comparison of the results for
Pe / N (i.e. without axial conduction) and Br¼ 0 (i.e. no viscous
dissipation) are tabulated in Table 1 and also plotted in Fig. 2 for
different Kn. As seen from the table and the graph, a good agree-
ment has been achieved with 20 eigenvalues.
−0.5 −0.25 0 0.25 −0.5 −0.25 0 0.25 −0.5 −0.25 0 0.25 0.5
0

0.25

0.5

0.75

1

inlet

Exact
Approximate

N = 10N = 5N = 2

Fig. 6. Comparison of the RHS and LHS of Eq. (27) for different number of
eigenfunctions.
In Fig. 3, the variation of the local Nu is plotted for different Kn
for low Pe. By the inclusion of the rarefaction, the gradient at the
wall tends to decrease because of the temperature-jump at
the wall which leads to a decrease of the local Nu. Therefore, the
increase in Kn results in lower Nu. As Pe increases, the thermal
entrance length (i.e. the point where the local Nu reaches its
asymptotic value) increases due to the effect of the axial conduc-
tion. Keeping in mind that our x-axis is non-dimensional, the
difference in the thermal entrance length would be less
pronounced in the dimensional case.

Fig. 4 illustrates the variation of the local Nu along the channel
for different Kn, and for Pe / N (Fig. 4(a)), and for low Pe (Fig. 4(b)).
Results of Çetin et al. [13] are also included in Fig. 4(a), and the
results show a good agreement. Positive Br means that the fluid is
being heated and negative Br means that the fluid is being cooled.
Since the viscous dissipation is the result of the velocity gradient, it
is more pronounced near the wall where the velocity gradient is
significant. Therefore, the viscous dissipation affects the surface
temperature more significantly than the mean temperature [4]. As
a result, the difference between the wall temperature and the mean
temperature increases with increasing Br and leads to a lower local
Nu. For the Br< 0 case, the situation is vice-versa and leads to
a higher local Nu. Again, as Pe decreases, the entrance length
increases.

Fig. 5 shows the variation of the local Nu for different Br and
Kn. The difference between different Br is more significant for the
Kn¼ 0 case, and less pronounced as rarefaction increases. By the
introduction of the rarefaction, the velocity profile loses its
steepness because of the presence of the slip-velocity, especially
near the wall. Therefore, the effect of the viscous dissipation
becomes less significant and deviation from the Br¼ 0 case
diminishes.

Although the general eigenfunction expansion is a well-devel-
oped method, the completeness of the eigenfunctions is a critical
issue for the convergence of the solution. For the standard Sturm–
Liouville system, the completeness of the eigenfunctions is inher-
ently satisfied. However, for our system, the completeness of the
eigenfunctions is questionable. Some previous studies [24,25] also
mentioned this issue, and assumed completeness by comparing the
accuracy of their results with other studies instead of a rigorous
mathematical proof. In this study, the convergence of the solution is
checked by comparing the RHS and LHS of the Eq. (27) with
increasing number of eigenfunctions. Fig. 6 shows the LHS and RHS
of the Eq. (27) for different number of eigenfunctions. As seen from
the figure, the convergence is clear for increasing N. There is
a deviation near the wall due to singularity at the corner of the
inlet. Referring to this graph, we can conclude that our eigenfunc-
tion expansion converges. N¼ 20 is taken in this study for better
accuracy.
4. Conclusions

In this study, the Graetz problem is revisited to include the
rarefaction effect, the viscous dissipation term, and the axial
conduction in the fluid for the constant-wall-heat-flux boundary
condition to analyze the heat transfer characteristics of the fluid
flow inside a microtube. The energy equation is solved by using
general eigenfunction expansion by the help of the Mathematica�.
The effects of the Kn, Pe and Br on the local Nu are discussed. It is
found that the local Nu decreases with increasing Kn and Br. The
local Nu converges to the same fully-developed Nu for different Pe,
and the thermal entrance length increases with decreasing Pe. The
effect of Br on the local Nu is found to be less pronounced as the
rarefaction increases (i.e. increasing Kn).
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